Trial Equation Method for Solving the Improved Boussinesq Equation
نویسندگان
چکیده
منابع مشابه
Trial Equation Method for Solving the Improved Boussinesq Equation
Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملAn improved collocation method based on deviation of the error for solving BBMB equation
In this paper, we improve b-spline collocation method for Benjamin-Bona-Mahony-Burgers (BBMB) by using defect correction principle. The exact finite difference scheme is used to find defect and the defect correction principle is used to improve collocation method. The method is tested on somemodel problems and the numerical results have been obtained and compared.
متن کاملPseudospectral Method for the " Good " Boussinesq Equation
We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx + uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also reported.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2014
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2014.42007